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Abstract-Laminar film condensation at combined body force and forced convection of a binary vapour 
at a flat plate is considered. After a suitable coordinate transformation the general solution is seen to 
be structured according to a dimensionless length 5. The system of equations is solved by a finite difference 
method and two integral methods. Both integral treatments differ from each other by the expression 
for the velocity profile, one admitting an inflection point. This more complicated expression for the 
velocity profile is important, when the case of low condensation rate and dominating influence of body 
force is treated. Generally speaking, the integral treatment is very satisfactory. The influence of heat 
transfer in the vapour, variable fluid properties and thermodynamic coupling by thermal diffusion and 

diffusional therm0 is discussed. 

CP, heat capacity; 

D, diffusion coefficient; 

!7*> gravity in direction of flow; 

h, enthalpy ; 
Ah,, enthalpy of evaporation; 

.l, diffusion al flux ; 
m, mass flux ; 
n;r, molar weight; 

Nut Nusselt number; 

NOMENCLATURE Subscripts 

2, 

m3, 
W, 

at the interface; 
in the condensate; 
in the free stream; 
at the wall. 

IN THE last ten years, considerable work has been done 
on film condensation of mixed vapours using boundary- 

layer theory. Sparrow and Lin [l], Minkowycz and 
Sparrow [2], Sparrow, Minkowycz and Saddy [3], 
Denny, Mills and Jusionis [4], Denny and Jusionis [5] 
and Jones and Renz [6] solved the equations for various 
cases of film condensation for mixtures of vapours and 
non-condensable gases. Koh and Grafton [7], Koh [8], 
Sparrow and Marschall [9], Marschall and Hickmann 

[lo], Taitel and Tamir [ll], Denny and South [12], 
Denny and Jusionis [13] and Taitel, Tamir and 
Schliinder [14] reported solutions on similar cases for 
mixtures of condensable vapours. The present paper 
gives an overall solution of combined body force and 
forced convection in film condensation of mixed 
vapors which contains so far solved problems as limit- 
ing cases. It investigates in particular the merits of an 
exact finite difference treatment and its inherent diffi- 
culties in comparison with two formulations of the 
approximate integral technique. The transition of the 
general problem to the asymptotic cases of pure body 
force and forced convection is studied in some detail 
as it is important in practical application. The influence 
of heat transfer in the vapour, variable thermophysical 
properties and thermodynamic coupling is discussed 
in connection with the objective of reducing compu- 
tational effort. 

ReL,, =F, 
VL 

T, 
u, 
W 

X, 

Xl, 

Y, 
Y1, 

Reynolds number with kinematic viscosity 
of liquid; 

temperature; 
velocity in x-direction; 
velocity in Y-direction; 
coordinate along the plate; 
mass species concentration of methanol in 

the liquid; 
coordinate perpendicular to the plate; 
mass species concentration of methanol in 

the vapour. 

Greek symbols 

thermal diffusion factor; 
thickness of velocity boundary layer; 
thickness of condensate film; 
thickness of species layer; 
dimensionless coordinate in the vapour; 
heat conductivity; 
dynamical viscosity; 
kinematic viscosity; 

= ‘q, dimensionless coordinate; 
u, 

density; 
shear force. 

INTRODUCTION 

THE PHYSICAL MODEL 

A flat plate with arbitrary inclination, measured by 
CC, is considered, Fig. 1. The gravity has the component 
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FIG. I. Physical model and coordinates. 

g* in thedirection of flow. The vapour has a free stream 

velocity of u,, its temperature is T,. Under the con- 
dition of saturation at r,, the concentration )‘i * of 
the vapour is defined. The condensate is assumed to 

form a laminar, wavefree film on the plate. The tem- 
perature at the film surface is identical in liquid and 
vapour, i.e. no thermal resistance is assumed to exist 
at the interface. The concentrations in vapour and 
liquid at the interface are determined by the condition 
of thermodynamic equilibrium. Complete solubility is 

assumed in the liquid phase. The vapour flow is 
assumed to be laminar, too. The speculation by 

Shekriladse and Gomelauri 11.51 that this should in 
practical cases be the case because of the stabilizing 
effect that suction has on the vapour layer has become 
questionable by the work of Jones and Renz [6], who 
calculate turbulent profiles on the basis of experimental 
results. Here, this assumption is part of the physical 
model. 

THE ANALYTICAL MODEL 

In principle the analytical treatment should start 

with the full conservation equations. Specific features 
of the problem, however, allow a few simplifications 
of great importance. For the liquid film, it is generally 
accepted that Nusselt’s assumptions may be used for 
non-metallic liquids at technical conditions. when the 
thermophysical properties are evaluated at a suitable 
reference condition, for which is chosen here a 

temperature 

TL~ = 7;+:(7;- T,) (1) 

and the species concentration xii of the saturated 
liquid at T. Comments on such a procedure can be 
found in the papers by Poots and Miles [16] and 
Denny and Mills [ 171. The simplified equations for the 
condensate film are 

(3) 

(4) 

Equation (4) implies that there is no significant resist- 
ance to mass transfer in the liauid. It predicts a uniform 

concentration profile in the film. This of course also 
neglects that the local concentration of the film is 
influenced by oncoming liquid from above the location 
considered. For the results presented in this paper, 
this is immaterial as shown in [13]. 

For the vapour flow, Prandtl’s boundary-layer as- 
sumptions are introduced to give 

,(u;+c;) = -;+g*b-Pm) (6) 

(7) 

(8) 

The justification to use these simplified equations for 
analysis of condensing flow is not easy to give rigor- 
ously. Comparison with experimental results, for in- 
stance by Al-Diwany and Rose [19] and Renz and 
Jones [6], indicate the model to be not greatly in error, 
at least. 

For laminar flow, the following expressions are used 
for the fluxes 

(9) 

,j= _cL~+.~xTyl(~_yl)- d(ln T) 

SC 34 SC 3Y 
(10) 

q- P+3T A 
Pr ?Y 

CXTRT ,n;r, .i. 

The system of equations is subject to the 
boundary and coupling conditions. 

(11) 

following 

(y[.=O): uL=O; TL= T,; $!=O (12) 

(y-‘m): u+u,; T-+T,; Y&Jl, (13) 

(YL = bL; y = 0): ML = u (14) 

TL = T (15) 

SL = 5 (16) 

riljlL = ti (17) 

&_J- (18) 
x1 -4’1 

XI = .fi(yd = h(T). (20) 

The local condensing mass flow density is given by 

d 

j 

hl. 
h=r&-_ 

dxL o 
PL UL d.v, (21) 

The total mass flux for 1 m width of the plate is 

i,,, = jOLrndxr. = - jrpLu,dyL. (22) 

The thermophysical properties of the pure liquids were 
taken from the tables of the VDI-Wlrmeatlas f191 and 



Landolt-Biirnstein [20]. Simple mixture rules were 
applied to generate properties of liquid mixtures. The 

properties of the vapour were calculated according to 

kinetic theory and ideal gas behaviour. 

TRANSFORMATION 

For the considered system of partial differential 
equations a transformation from the physical coordi- 
nates x and y to the dimensionless coordinates 5 and 
q, defined by 

is useful. Defining dimensionless streamfunctions, tem- 

peratures and concentrations a system of equations 

and boundary conditions results which has a useful 
property for reducing computational effort. The equa- 

tions will not be given here, they can be found in [21]. 
It is found, as a consequence of this transformation, 
that the solution to the problem does not depend on 
the distance x, the velocity u, and the gravity g* 

separately, but instead on a combination 5 of these 
quantities. For the specific case of pure condensing 
vapour, this combination of variables, a local inverse 

Froude-number, was already used by Jacobs [22]. A 
similar combination for the case of combined forced 
and free convection without change of phase is known 
since a long time [23]. With the help of 5 the total 

solution may be structured in three regions, mathemat- 
ically as well as physically. For 5 = 0, the dependence 
on t vanishes leading to a system of ordinary differ- 
ential equations. Physically, 5 = 0 means a vanishing 
influence of gravity, for instance but not necessarily 
g = 0. For x + 0, i.e. towards the leading edge of the 
plate, 5 becomes zero, meaning that in this case one 

has always forced convection, even for high gravity 
and low free stream velocity. Physically this may be 
explained from the fact that gravity is a body force 
while viscous shear leads to an area force. For x -+ 0 
the influence of gravity therefore approaches zero with 
x3, while that of shear force does with x2. For 4 + co, 

again the influence of 5 vanishes and a system of 
ordinary differential equations is obtained for the 
limiting case of pure body force convection. For finite 
values of 5, no rigorous reduction of the problem to 
ordinary differential equations is possible, the solution 
is nonsimilar. 

METHODS OF SOLUTION 

Exact solutions of the partial differential equations 

describing the vapour side of the problem may be 
obtained by finite difference methods. In this work, as 
in the work of the two other investigators before 
[6,13], the procedure of Pantankar and Spalding [24] 
was used. The system of ordinary differential equations 
for 5 = 0 provided reasonable starting profiles at the 
leading edge of the plate. This way to start the forward 
marching calculation appears to be preferable to the 
choices made in the works cited above. The results in 
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the vapour flow could be inserted into the liquid side 

equations which allowed an analytical solution due to 

the use of Nusselt’s simplifications. Several different 

methods were investigated in the numerical procedure, 
which was complicated considerably by the presence 
of two coupled fluid phases. In a solution without 

iteration the liquid layer was solved by using the 
results of the vapour layer upstream. Damping devices 
were necessary to obtain stable results with this pro- 
cedure in some cases, especially for the horizontal plate 

which was treated in test calculations. Solutions with 
iteration at each step have been described by Jusionis 

[13] and Jones and Renz [6]. They were investigated 
and modified in the present work. Generally speaking, 
iteration helped to stabilize the numerical procedure, 
such that no damping devices were necessary in this 

case. Results for the horizontal plate using the finite 
difference technique were compared to exact solutions 
of the ordinary differential equations describing this 

case. The differences were always less than l%, support- 
ing confidence in the numerical procedure. 

Because of the inherent and well known difficulties 

encountered in applying finite difference methods to 
the solution of practical problems by practical engin- 
eers, an integral treatment of the problem was investi- 

gated in some detail. Encouraged by comparison with 
the complete solutions, the integral formulation was 

given for negligible effect of thermodynamic coupling 
and constant vapour properties evaluated at a suitable 
reference state. The temperature profile was assumed 
to be identical to the species concentration profile, an 

approximation which is reasonable, as heat transfer in 
the vapour does not have a strong influence on the 
results anyhow. The energy equation is therefore not 

needed any more. 
The integral equations for momentum and species 

concentration are then given by 

(26) 

For the species concentration as well as temperature 
profile, the following expression was selected 

.Yl -J’1i 
p= -2(&)+($y =G (27) 
Yli-Ylcc 

which satisfies obvious boundary conditions. 
For the velocity profile, two expressions were in- 

vestigated. 

(3, = -2(;)+($ (28) 

and 
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complete i~n!le difference treolment 
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FIG. 7. Modilied Nusselt number for specified conditions. Finite ditrerence treatment. 

FIN. 3. Reduced temperature difference for specified conditions. Finite difference treatment 

Both expressions satisfy obvious boundary conditions. the value of the quantity 17 which has the dimension 
Neither profile actually contains the influence of of a velocity. This quantity C was introduced by Rose 
suction explicitly. This is however taken into account [25] in his investigation on the limiting case of pure 
by 6 which decreases with increased suction giving rise body force condensation. Indeed has such an inffection 
to enlarged velocity gradients at the film surface. point been found to exist for small temperature differ- 
Profile II is considerably more complicated than ences ‘T, - T, [9] in free convection condensation. Its 
profile I. Its main advantage must be seen in the fact importance in combined forced and free convection 
that it is capable of an inflection point depending on is investigated in this work. Both formulations were 
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evaluated and will be discussed below. The full equa- 

tions will not be given here, since the calculations are 

basically simple yet lengthy. It should be remarked 
however, that in case II, it was necessary to assume 
identical boundary layer thicknesses for velocity and 
species concentration in order not to have more un- 
knowns than equations. Both integral formulations 
led to three simple first order ordinary differential 

equations, which could be solved by standard tech- 
niques. To start the calculation, solutions had to be 
found near the leading edge of the plate. Again this 

was achieved by considering the case of 5 = 0, for 
which the integral formulations yield algebraic equa- 
tions which are easily solved. Iteration was again 
necessary at each step if excessively small forward 
steps were to be avoided in order to save computer 

time. 
RESULTS AND DISCUSSION 

In order to evaluate the heat flux density the Nusselt 
number NM and the temperature T at the interface 
must be known. They will be given in this paper 
separately for some specific cases of methanol-water 
condensation. Some general results for the case of a 
horizontal plate may be found in another paper of the 
same author [26]. 

In Figs. 2 and 3 some solutions obtained with the 
finite difference method are shown. In Fig. 2 the modi- 
fied Nu number Nu/J(ReL,) is plotted against 5, in 
Fig. 3 the analogous presentation is given for the 
reduced temperature difference z - TWIT, - T,. In 

both figures, the structure of the solution as a function 

of 5 is clearly recognized. For low values of 5, the 
limiting case of forced convection, the modified NM 

number as well as the temperature x are independent 

of 5. For high values of 5, towards the limiting case 
of free convection, the temperature difference becomes 
again independent of 5. Its value is lower than in the 
case 5 = 0. The Nu-number approaches the functional 

dependence <‘j4. This is in agreement with Nusselt’s 

theory for negligible vapour flow and is true rigorously 
even if the body force convection occurring in the 
vapour mixture is taken into account. The limiting 
cases of forced and free convection are reached rigor- 

ously only for 5 = 0 resp. 5 = X, the latter not being 
presentable in the figures. One can see, however, that 
even for finite values of 5 the limiting cases are reached 
with sufficient accuracy. This fact of course has a con- 
siderable practical importance since the limiting cases 
can be calculated from ordinary differential equations. 

Unfortunately no clear a priori criterion can be given, 
as the phenomena depend not only on 5 but also on 
the specific condensation conditions. If no high accu- 

racy is required, one can deduce critical values of < 
for practical purposes. Definitely the usual practice of 
neglecting one effect or the other depending on values 
of the velocity u, is not justified from a rigorous 
standpoint, though certainly useful in order of magni- 
tude estimations. Also represented in the figures are 
results without thermodynamic coupling and with con- 
stant vapour properties evaluated at a reference state. 
Thermal diffusion and diffusional therm0 are com- 

pletely negligible for the considered case, which does 

not exclude that they become more important for other 
mixtures, especially those with very different molecular 

weights. In the constant property analysis, a suitable 

reference state was found to be 

T,=:(7;+T,) (301 

with the species concentration of the saturated vapour 
at Tr. This simplified analysis approximates the com- 
plete solution to within 2:< and is therefore quite satis- 
factory. This result, of course, rests entirely on the fact 
that small temperature differences in a vapour were 
investigated here, such that the property variation over 
the vapour layer should not be very large. This however 
is a case quite frequently encountered in condensation 

phenomena. 
Figures 4 and 5 show the agreement between the 

finite difference treatment and both integral formu- 

lations. The agreement is entirely satisfactory in the 
whole region represented in the figures, where the two 

integral formulations do not differ at all to any signi- 
ficant extent. This result is quite important. and 
plausible, too. Condensation phenomena, at least in 
the region considered in the figures, are characterized 

by simple profiles of temperature, species concentration 

and velocity in the vapour layer. They can be approxi- 
mated with good accuracy by the simple parabolic 
expressions of integral formulation I. Differences how- 
ever show up in some cases when the limiting case of 
free convection is approached closer. Exact solutions 
for body force condensation of methanol-water mix- 

tures have been presented earlier [9, 1 I]. Comparing 
these free convection results of Tamir and Taitel [ 1 l] 
for the heat flux with those of integral formulation I 

leads to excellent agreement for high condensation 
rates, i.e. high values of the temperature difference 
YZ- T,. For small condensation rates the agreement 
becomes poor. Typical examples are deviations of 15% 
for T,, = 365 K, T, = 350 K and more than SOY,, for 
T, = 370 K, T, = 365 K. These deviations cannot of 
course be explained by differences in the fluid proper- 
ties, though these may add to the picture. Instead the 

origin of the discrepancies was verified to lie in the 
more complicated velocity held for the low conden- 

sation rates, where inflection points had to be taken 
into account. This is impossible for integral formulation 
I, as the expression for the velocity profile there is a 
simple parabola. Integral formulation II however ad- 

mits such an inflection point depending on the quantity 
ii. Figure 6 substantiates this statement. The velocity 
ratio u/u, as calculated from integral formulation II 

is plotted against the dimensionless boundary-layer 
thickness y/6 for several values of i; measuring the 
influence of free convection. The conditions are T, = 
370 K and T, = 365 K. It can clearly be seen that up 
to 5 = 2.6 no inflection point shows up in the velocity 
profile, yet does at a value of i; = 15. For conditions 
of higher condensation rate, i.e. TX, = 370 K and T, = 
350K as shown in Fig. 7, no inflection point is found 
up to values of 5 as high as 87, where the limit of body 
force convection may be assumed to be attained. This 
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FIG. 4. Comparison of integral and tinite difference treatment for modified Nusseh number. 

FIG. 5. Comparison of integral and finite difference treatment for reduced temperature 
difference. 

explains why both integral formulations do not differ instance, in the examples cited above the agreement is 
within the region considered in the figures, yet the first almost perfect for the case T, = 365 K, T, = 350 K, 
gives poor results for low condensation rates and good which may be fortuitious. For T, = 370K and T, = 
results for high condensation rates in the limiting 365K agreement is within 18:/, which is by far the 
case of free convection. As may be expected from worst case encountered. Thus the effort of applying a 
this investigation, the results of integral formulation more complicated expression for the velocity profile is 
II are in much better agreement with the low con- justified and necessary only for cases of low conden- 
densation rate results of Tamir and Taitel [I I]. For sation rate and dominant influence of body force. 
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T,=370K 

Tw = 365 K 

I I I I 1 I I I , 
01 02 03 04 05 06 07 0.6 09 

FIG. 6. Velocity profiles in the vapour at low 
condensation rates. 

T,=370K 

T,=340K 

I I 1 I I I I I I 
0 I 0 2 03 0.4 05 0.6 0.7 0.8 0.9 

FIG. 7. Velocity profiles in the vapour at high 
condensation rates. 

IO 6. 

Generally speaking the whole region of condensation 
conditions investigated may well be analyzed with 
sufficient accuracy by the approximate integral tech- 
nique. The computer time saved in comparison with the 
finite difference calculation is considerable, the time 
necessary for the integral treatment being about one 
tenth of that in the finite difference treatment. 
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CONDENSATION LAMINAIRE EN FILM DE MELANGES DE 
VAPEUR EN PRESENCE DE FORCES VOLUMIQUES EN CONVECTION 

FORCEE-METHODES INTEGRALE ET DE DIFFERENCES FINIES 

R&sum&On considkre la condensation laminaire en film d’une vapeur binaire en prCsence de forces 
volumiques en convection for&e sur une plaque plane. Aprtis un changement convenable de coordonntes 
on constate que la solution gin&ale s’exprime a l’aide d’une longueur < rendue adimensionnelle. Le 
systtme d’tquations est r&solu ;I l’aide d’une mkthode de diff&rences finies et de deux mtthodes intbgrales. 
Les deux traitements inttgraux diffirent l’un de I’autre par I’expression du profil de vitesse. l’un d’entre 
eux admettant un point d’inflexion. Cette expression plus compliqute pour le profil de vitesse est 
importante pour le traitement du cas d’un faible taux de condensation avec prbdominance des forces 
de volume. De manitire g&n&ale, le traitement intkgral est tr&s satisfaisant. On discute l’influence du 
transfert thermique dans la vapeur, des variations des propri&tCs du fluide et des couplages 

thermodynamiques. 

LAMINARE FILMKONDENSATION VON GEMISCHDAMPFEN AN DER 
PLATTE BEI UBERLAGERUNG VON ERZWUNGENER UND FREIER STR~MUNG 

INTEGRAL- UND DIFFERENZENVERFAHREN 

Zusammenfassung-Es wird die laminare Filmkondensation eines binaren Dampfgemisches an einer 
ebenen Platte bei ijberlagerung von erzwungener und freier Striimung untersucht. Mit Hilfe einer 
geeigneten Koordinatentransformation l%Bt sich das gesamte LGsungsgebiet des Gleichungssystems nach 
Werten der dimensionslosen Laufliinge 5 in mehrere Teilbereiche gliedern. Das Gleichungssystem wird 
mit einem Differenzenverfahren und zwei Integralverfahren gel&t. Beide Integralverfahren unterscheiden 
sich durch den Ansatz fiir das Geschwindigkeitsprofil, wobei beim einen ein Wendepunkt zugelassen ist, 
beim anderen nicht. Es zeigt sich, daB der Wendepunkt nlitig ist, wenn Falle niedriger Kondensationsrate 
und dominierendem SchwerkrafteinfluB untersucht werden. Insgesamt ist die Leistungsfihigkeit des 
Integralverfahrens sehr befriedigend. Untersucht werden auljerdem der EinfluB der Wiirmeleitung im 
Dampf, variabler Stoffwerte sowie der thermodynamischen Kopplung durch Thermodiffusion und 

Diffusionsthermik. 

MCCJ’IE~OBAHME COBMECTHOti ECTECTBEHHOti M BYHY-IKflEHHOti 
KOHBEKIJMM IIPM JIAMMHAPHOR FIJlEHOYHOfi KOHflEHCAL(MM 6MHAPHbIX 

IIAPOB C nOMOUbl0 MHTEI-PAJlbHOI-0 M KOHEYHO-PA3HOCTHOTO 
M ETOAOB 

AHHoTamin - PaCCMaTpHBamTCB JIaMHHapHaR nfleHOqHaR KOHneHcauMR npw cOBMeCTHOi? ecTe- 
CTBeHHOii H ByHyXneHHOfi KOHBeKUMM 6HHapHOrO napa Ha IUlOCKOfi IlJlaCTHHe. nOKaXiH0. ‘I r0 l,OCJle 

COOTBeTCTByIoIUerO IIpeO6pa30BaHm KOOpnHHaT o6mee petueHMe CTPOHTCR no 6eypa.jwepHoii n.lHHe 
5. CHCTeMa ypaBHeHHii PeLuaeTCR KOHe'IHO-pa3HOCTHblM MeTOnOM M nByM5, MHTeFpaJIbHblMM MeTO- 

~~M~,KOTOpbleOTnli~~loTC~~py~OT~py~aHaflll~~eMBbl~a~eH~~~fl~~pO~~nflCKO~OC~-I1.Ilr)ll~eM B 

onHoMsi3~~xnonycKaeTcaTosKa nepera6a. 3~06oneecnoxcHoeBbrpame~~e nnR npo@clr~nc~opoc~~ 
BamHo B cnyvae paccMoTpeHm Manoii CKO~OCTH KoHfleHcaum H nomiwipytouiero BIIIIRHMH Mac- 

COBOfi CBnbI. BooGme I’OBOpn, HHTerpaJIbHbIfi MeTOn BeCbMa ynoBneTBopMTeneH. 06cyxflaeTcfl 

Bnlimae nepeHoca Tenna npa Hanwiwi TepMavecKoii mi44y3m M TepMoni4&$y3Mi4 Ha csoLicTsa 

napa,m~nKOCTti H TepMonaHaMHYecKoe B3aHMoneAcTBL4e. 


