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Abstract— Laminar film condensation at combined body force and forced convection of a binary vapour
at a flat plate is considered. After a suitable coordinate transformation the general solution is seen to
be structured according to a dimensionless length £. The system of equations is solved by a finite difference
method and two integral methods. Both integral treatments differ from each other by the expression
for the velocity profile, one admitting an inflection point. This more complicated expression for the
velocity profile is important, when the case of low condensation rate and dominating influence of body
force is treated. Generally speaking, the integral treatment is very satisfactory. The influence of heat
transfer in the vapour, variable fluid properties and thermodynamic coupling by thermal diffusion and
diffusional thermo is discussed.

NOMENCLATURE
Cps heat capacity;
D, diffusion coefficient;
g*, gravity in direction of flow;
h, enthalpy;
Ah,, enthalpy of evaporation;
Js diffusional flux;
m, mass flux;
M,  molar weight;
Nu, Nusselt number;
ReLx , = ELX )
VL
Reynolds number with kinematic viscosity
of liquid;
T, temperature;
u, velocity in x-direction;
v, velocity in y-direction;
X, coordinate along the plate;
X1, mass species concentration of methanol in
the liquid;
Y, coordinate perpendicular to the plate;
V1 mass species concentration of methanol in
the vapour.
Greek symbols
oy,  thermal diffusion factor;
d, thickness of velocity boundary layer;
J., thickness of condensate film;
dy,,  thickness of species layer;
n, dimensionless coordinate in the vapour;
A, heat conductivity;
i dynamical viscosity;
v, kinematic viscosity;
g*x . .
g, = T dimensionless coordinate;
o
2, density;
T, shear force.

Subscripts
i, at the interface;
L, in the condensate;
o0, in the free stream;
w, at the wall.

INTRODUCTION

IN THE last ten years, considerable work has been done
on film condensation of mixed vapours using boundary-
layer theory. Sparrow and Lin [1], Minkowycz and
Sparrow [2], Sparrow, Minkowycz and Saddy [3],
Denny, Mills and Jusionis [4], Denny and Jusionis [5]
and Jones and Renz [ 6] solved the equations for various
cases of film condensation for mixtures of vapours and
non-condensable gases. Koh and Grafton [7], Koh [8],
Sparrow and Marschall [9], Marschall and Hickmann
[10], Taitel and Tamir [11], Denny and South {12],
Denny and Jusionis [13] and Taitel, Tamir and
Schliinder [14] reported solutions on similar cases for
mixtures of condensable vapours. The present paper
gives an overall solution of combined body force and
forced convection in film condensation of mixed
vapors which contains so far solved problems as limit-
ing cases. It investigates in particular the merits of an
exact finite difference treatment and its inherent diffi-
culties in comparison with two formulations of the
approximate integral technique. The transition of the
general problem to the asymptotic cases of pure body
force and forced convection is studied in some detail
asit is important in practical application. The influence
of heat transfer in the vapour, variable thermophysical
properties and thermodynamic coupling is discussed
in connection with the objective of reducing compu-
tational effort.

THE PHYSICAL MODEL

A flat plate with arbitrary inclination, measured by
a, is considered, Fig. 1. The gravity has the component
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FiG. 1. Physical model and coordinates.

g* in the direction of flow. The vapour has a free stream
velocity of u,, its temperature is 7T,.. Under the con-
dition of saturation at T, , the concentration y,,, of
the vapour is defined. The condensate is assumed to
form a laminar, wavefree film on the plate. The tem-
perature at the film surface is identical in liquid and
vapour, i.e. no thermal resistance is assumed to exist
at the interface. The concentrations in vapour and
liquid at the interface are determined by the condition
of thermodynamic equilibrium. Complete solubility is
assumed in the liquid phase. The vapour flow is
assumed to be laminar, too. The speculation by
Shekriladse and Gomelauri [15] that this should in
practical cases be the case because of the stabilizing
effect that suction has on the vapour layer has become
questionable by the work of Jones and Renz [6], who
calculate turbulent profiles on the basis of experimental
results. Here, this assumption is part of the physical
model.

THE ANALYTICAL MODEL

In principle the analytical treatment should start
with the full conservation equations. Specific features
of the problem, however, allow a few simplifications
of great importance. For the liquid film, it is generally
accepted that Nusselt’s assumptions may be used for
non-metallic hiquids at technical conditions, when the
thermophysical properties are evaluated at a suitable
reference condition, for which is chosen here a
temperature

T =T+3T—-T,) (1)

and the species concentration x;; of the saturated
liquid at T;. Comments on such a procedure can be
found in the papers by Poots and Miles [16] and
Denny and Mills [17]. The simplified equations for the
condensate film are

quL
H—=—5 +g*p—ps)=0 &)
CYL
3T
=5 =0 3)
CyL
My,
G =0 “)
CyL

Equation (4) implies that there is no significant resist-
ance to mass transfer in the liquid. It predicts a uniform
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concentration profile in the film. This of course also
neglects that the local concentration of the film is
influenced by oncoming liquid from above the location
considered. For the results presented in this paper,
this is immaterial as shown in [13].

For the vapour flow, Prandtl’s boundary-layer as-
sumptions are introduced to give

/ P o (5)
Ox y
u  Ou ot
p<u—+vr> = —?-f-y*(P‘Pw) (6)
ox Cy oy
T T oq 0
pcp<u7+vj~>=—r—17(h1~hz) (7)
Ox dy oy oy
ay ay éj
p(uﬁ+v :h _— (8)
ox éy dy

The justification to use these simplified equations for
analysis of condensing flow is not easy to give rigor-
ously. Comparison with experimental results, for in-
stance by Al-Diwany and Rose [19] and Renz and
Jones [6], indicate the model to be not greatly in error,
at least.

For laminar flow, the following expressions are used

for the fluxes
2

cu
T=—p 9)
ay
. HOyL ¢ d(InT)
- _" il (1= v
J Sc oy s aryi(l—y1) o (10)
ucy 6T M
= —— ——o7RT ——=—.
proy T w A an

The system of equations is subject to the following
boundary and coupling conditions.

=0 u=0; T=T,; %=0 (12)
(=) =g TTo; y1oyie  (13)
r=0r;y=0) u,=u (14)
TL=T (15)
=t (16)
g, = 1 (17
I —— (18)
X1—=V1

oT Ve
gL = —).-E—aTRTEﬁz]JrthAh., (19)
x1 = filyy) = fo(T). (20)

The local condensing mass flow density is given by

. . d ay
M=ty = _‘f prucdy;. (1)
dx. Jo
The total mass flux for 1 m width of the plate is
L ar,
Mo = J mdx, = —j prucdyy. (22)
0 [d]

The thermophysical properties of the pure liquids were
taken from the tables of the VDI-Warmeatlas [19] and
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Landolt-Bérnstein [20]. Simple mixture rules were
applied to generate properties of liquid mixtures. The
properties of the vapour were calculated according to
kinetic theory and ideal gas behaviour.

TRANSFORMATION
For the considered system of partial differential
equations a transformation from the physical coordi-
nates x and y to the dimensionless coordinates ¢ and
#, defined by

. 9% g*x
E="5, &= 2L (23)
Us Uz

U 3y U, 4
'1=< ) J <£>dy, m=( ) yo (24)
Ve X o \Pr Vir XL

is useful. Defining dimensionless streamfunctions, tem-
peratures and concentrations a system of equations
and boundary conditions results which has a useful
property for reducing computational effort. The equa-
tions will not be given here, they can be found in [21].
It is found, as a consequence of this transformation,
that the solution to the problem does not depend on
the distance x, the velocity u, and the gravity g*
separately, but instead on a combination ¢ of these
quantities. For the specific case of pure condensing
vapour, this combination of variables, a local inverse
Froude-number, was already used by Jacobs [22]. A
similar combination for the case of combined forced
and free convection without change of phase is known
since a long time [23]. With the help of & the total
solution may be structured in three regions, mathemat-
ically as well as physically. For & = 0, the dependence
on ¢ vanishes leading to a system of ordinary differ-
ential equations. Physically, £ = 0 means a vanishing
influence of gravity, for instance but not necessarily
g = 0. For x —» 0, ie. towards the leading edge of the
plate, & becomes zero, meaning that in this case one
has always forced convection, even for high gravity
and low free stream velocity. Physically this may be
explained from the fact that gravity is a body force
while viscous shear leads to an area force. For x —» 0
the influence of gravity therefore approaches zero with
x3, while that of shear force does with x2. For ¢ = o,
again the influence of ¢ vanishes and a system of
ordinary differential equations is obtained for the
limiting case of pure body force convection. For finite
values of £, no rigorous reduction of the problem to
ordinary differential equations is possible, the solution
is nonsimilar.

METHODS OF SOLUTION

Exact solutions of the partial differential equations
describing the vapour side of the problem may be
obtained by finite difference methods. In this work, as
in the work of the two other investigators before
[6, 13], the procedure of Pantankar and Spalding [24]
was used. The system of ordinary differential equations
for £ = 0 provided reasonable starting profiles at the
leading edge of the plate. This way to start the forward
marching calculation appears to be preferable to the
choices made in the works cited above. The results in
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the vapour flow could be inserted into the liquid side
equations which allowed an analytical solution due to
the use of Nusselt’s simplifications. Several different
methods were investigated in the numerical procedure,
which was complicated considerably by the presence
of two coupled fluid phases. In a solution without
iteration the liquid layer was solved by using the
results of the vapour layer upstream. Damping devices
were necessary to obtain stable results with this pro-
cedure in some cases, especially for the horizontal plate
which was treated in test calculations. Solutions with
iteration at each step have been described by Jusionis
[13] and Jones and Renz [6]. They were investigated
and modified in the present work. Generally speaking,
iteration helped to stabilize the numerical procedure,
such that no damping devices were necessary in this
case. Results for the horizontal plate using the finite
difference technique were compared to exact solutions
of the ordinary differential equations describing this
case. The differences were always less than 19, support-
ing confidence in the numerical procedure.

Because of the inherent and well known difficulties
encountered in applying finite difference methods to
the solution of practical problems by practical engin-
eers, an integral treatment of the problem was investi-
gated in some detail. Encouraged by comparison with
the complete solutions, the integral formulation was
given for negligible effect of thermodynamic coupling
and constant vapour properties evaluated at a suitable
reference state. The temperature profile was assumed
to be identical to the species concentration profile, an
approximation which is reasonable, as heat transfer in
the vapour does not have a strong influence on the
results anyhow. The energy equation is therefore not
needed any more.

The integral equations for momentum and species
concentration are then given by

d 3 d 4
(o) 4o} o
3
_g*J (1_"_°°)dy (25)
Y=0 0 p

d O 2
—< u(yl—ym)dy>+v,»(ym_y“)= _p
dx\ Jo 3

N
au
-y —

Cy

y=0

(26)

For the species concentration as well as temperature
profile, the following expression was selected

iy _ _2<_>;>+<Ty_>2 _T-T
Vi V1w dy, Oy, -1,

which satisfies obvious boundary conditions.
For the velocity profile, two expressions were in-

vestigated.
., 2

=)0

Ui—Uy /1 0 (5
and

u—u; y W2 Gi—uy [y y
=2 = Sh1=-=.

<u,»—-uoo>u <5>+<6> +u,~——uw<5>[ 6:| (29)

(27)

(28)
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Both expressions satisfy obvious boundary conditions.
Neither profile actually contains the influence of
suction explicitly. This is however taken into account
by & which decreases with increased suction giving rise
to enlarged velocity gradients at the film surface.
Profile II is considerably more complicated than
profile L. Its main advantage must be seen in the fact
that it is capable of an inflection point depending on

the value of the quantity # which has the dimension
of a velocity. This quantity & was introduced by Rose
[25] in his investigation on the limiting case of pure
body force condensation. Indeed has such an inflection
point been found to exist for small temperature differ-
ences T, — T, [9] in free convection condensation. Its
importance in combined forced and free convection
is investigated in this work. Both formulations were
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evaluated and will be discussed below. The full equa-
tions will not be given here, since the calculations are
basically simple yet lengthy. It should be remarked
however, that in case II, it was necessary to assume
identical boundary layer thicknesses for velocity and
species concentration in order not to have more un-
knowns than equations. Both integral formulations
led to three simple first order ordinary differential
equations, which could be solved by standard tech-
niques. To start the calculation, solutions had to be
found near the leading edge of the plate. Again this
was achieved by considering the case of & =0, for
which the integral formulations yield algebraic equa-
tions which are easily solved. Iteration was again
necessary at each step if excessively small forward
steps were to be avoided in order to save computer
time.
RESULTS AND DISCUSSION

In order to evaluate the heat flux density the Nusselt
number Nu and the temperature T; at the interface
must be known. They will be given in this paper
separately for some specific cases of methanol-water
condensation. Some general results for the case of a
horizontal plate may be found in another paper of the
same author [26].

In Figs. 2 and 3 some solutions obtained with the
finite difference method are shown. In Fig. 2 the modi-
fied Nu number Nu/,/(Re.,) is plotted against &, in
Fig. 3 the analogous presentation is given for the
reduced temperature difference T,—T,,/T,.—T,. In
both figures, the structure of the solution as a function
of ¢ is clearly recognized. For low values of £, the
limiting case of forced convection, the modified Nu
number as well as the temperature T; are independent
of £ For high values of &, towards the limiting case
of free convection, the temperature difference becomes
again independent of & Its value is lower than in the
case ¢ = 0. The Nu-number approaches the functional
dependence ¢4, This is in agreement with Nusselt’s
theory for negligible vapour flow and is true rigorously
even if the body force convection occurring in the
vapour mixture is taken into account. The limiting
cases of forced and free convection are reached rigor-
ously only for ¢ = 0 resp. & = oc, the latter not being
presentable in the figures. One can see, however, that
even for finite values of £ the limiting cases are reached
with sufficient accuracy. This fact of course has a con-
siderable practical importance since the limiting cases
can be calculated from ordinary differential equations.
Unfortunately no clear a priori criterion can be given,
as the phenomena depend not only on ¢ but also on
the specific condensation conditions. If no high accu-
racy is required, one can deduce critical values of ¢
for practical purposes. Definitely the usual practice of
neglecting one effect or the other depending on values
of the velocity u, is not justified from a rigorous
standpoint, though certainly useful in order of magni-
tude estimations. Also represented in the figures are
results without thermodynamic coupling and with con-
stant vapour properties evaluated at a reference state.
Thermal diffusion and diffusional thermo are com-
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pletely negligible for the considered case, which does
not exclude that they become more important for other
mixtures, especially those with very different molecular
weights. In the constant property analysis, a suitable
reference state was found to be

T,=A{T+T,) (30)

with the species concentration of the saturated vapour
at Tr. This simplified analysis approximates the com-
plete solution to within 2% and is therefore quite satis-
factory. This result, of course, rests entirely on the fact
that small temperature differences in a vapour were
investigated here, such that the property variation over
the vapour layer should not be very large. This however
is a case quite frequently encountered in condensation
phenomena.

Figures 4 and 5 show the agreement between the
finite difference treatment and both integral formu-
lations. The agreement is entirely satisfactory in the
whole region represented in the figures, where the two
integral formulations do not differ at all to any signi-
ficant extent. This result is quite important. and
plausible, too. Condensation phenomena, at least in
the region considered in the figures, are characterized
by simple profiles of temperature, species concentration
and velocity in the vapour layer. They can be approxi-
mated with good accuracy by the simple parabolic
expressions of integral formulation 1. Differences how-
ever show up in some cases when the limiting case of
free convection is approached closer. Exact solutions
for body force condensation of methanol-water mix-
tures have been presented earlier [9, 11]. Comparing
these free convection results of Tamir and Taitel [11]
for the heat flux with those of integral formulation I
leads to excellent agreement for high condensation
rates, i.e. high values of the temperature difference
T,— T... For small condensation rates the agreement
becomes poor. Typical examples are deviations of 15%,
for T, = 365K, T,, = 350K and more than 50%, for
T, = 370K, T, = 365K. These deviations cannot of
course be explained by differences in the fluid proper-
ties, though these may add to the picture. Instead the
origin of the discrepancies was verified to lie in the
more complicated velocity field for the low conden-
sation rates, where inflection points had to be taken
into account. This is impossible for integral formulation
1, as the expression for the velocity profile there is a
simple parabola. Integral formulation I however ad-
mits such an inflection point depending on the quantity
it. Figure 6 substantiates this statement. The velocity
ratio u/u, as calculated from integral formulation II
is plotted against the dimensionless boundary-layer
thickness y/d for several values of ¢ measuring the
influence of free convection. The conditions are T, =
370K and T, = 365K. It can clearly be seen that up
to £ = 2.6 no inflection point shows up in the velocity
profile, yet does at a value of £ = 15. For conditions
of higher condensation rate, ie. T, = 370K and T,, =
350K as shown in Fig. 7, no inflection point is found
up to values of £ as high as 87, where the limit of body
force convection may be assumed to be attained. This
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explains why both integral formulations do not differ
within the region considered in the figures, yet the first
gives poor results for low condensation rates and good
results for high condensation rates in the limiting
case of free convection. As may be expected from
this investigation, the results of integral formulation
Il are in much better agreement with the low con-
densation rate results of Tamir and Taitel [11]. For

instance, in the examples cited above the agreement is
almost perfect for the case T, = 365K, T, = 350K,
which may be fortuitious. For T, = 370K and T, =
365K agreement is within 18%, which is by far the
worst case encountered. Thus the effort of applying a
more complicated expression for the velocity profile is
justified and necessary only for cases of low conden-
sation rate and dominant influence of body force.
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conditions investigated may well be analyzed with
sufficient accuracy by the approximate integral tech-
nique. The computer time saved in comparison with the
finite difference calculation is considerable, the time
necessary for the integral treatment being about one
tenth of that in the finite difference treatment.
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CONDENSATION LAMINAIRE EN FILM DE MELANGES DE
VAPEUR EN PRESENCE DE FORCES VOLUMIQUES EN CONVECTION
FORCEE—METHODES INTEGRALE ET DE DIFFERENCES FINIES

Reésume—On considére la condensation laminaire en film d'une vapeur binaire en présence de forces
volumiques en convection forcée sur une plaque plane. Aprés un changement convenable de coordonnées
on constate que la solution générale s'exprime a l'aide d’une longueur ¢ rendue adimensionneile. Le
systeme d’équations est résolu & I'aide d’une méthode de différences finies et de deux méthodes intégrales.
Les deux traitements intégraux différent 'un de Pautre par I'expression du profil de vitesse, I'un d’entre
eux admettant un point d'inflexion. Cette expression plus compliquée pour le profil de vitesse est
importante pour le traitement du cas d'un faible taux de condensation avec prédominance des forces
de volume. De maniére générale, le traitement intégral est trés satisfaisant. On discute I'influence du
transfert thermique dans la vapeur, des variations des propriétés du fluide et des couplages
thermodynamiques.

LAMINARE FILMKONDENSATION VON GEMISCHDAMPFEN AN DER
PLATTE BEI UBERLAGERUNG VON ERZWUNGENER UND FREIER STROMUNG -
INTEGRAL- UND DIFFERENZENVERFAHREN

Zusammenfassung—Es wird die laminare Filmkondensation eines bindren Dampfgemisches an einer
ebenen Platte bei Uberlagerung von erzwungener und freier Stromung untersucht. Mit Hilfe einer
geeigneten Koordinatentransformation laft sich das gesamte Losungsgebiet des Gleichungssystems nach
Werten der dimensionslosen Lauflange ¢ in mehrere Teilbereiche gliedern. Das Gleichungssystem wird
mit einem Differenzenverfahren und zwei Integralverfahren gelost. Beide Integralverfahren unterscheiden
sich durch den Ansatz fiir das Geschwindigkeitsprofil, wobei beim einen ein Wendepunkt zugelassen ist,
beim anderen nicht. Es zeigt sich, daB3 der Wendepunkt notig ist, wenn Fille niedriger Kondensationsrate
und dominierendem Schwerkrafteinflu untersucht werden. Insgesamt ist die Leistungsfahigkeit des
Integralverfahrens sehr befriedigend. Untersucht werden aullerdem der Einflul der Wirmeleitung im
Dampf, variabler Stoffwerte sowie der thermodynamischen Kopplung durch Thermodiffusion und
Diffusionsthermik.

UCCJEJOBAHUE COBMECTHOM ECTECTBEHHOM U BYHYX/AEHHOMN
KOHBEKLIMU IPU JJAMUHAPHOM TJIEHOYHON KOHJIEHCALIMM BUHAPHBIX
[MAPOB C MOMOIIBIO MHTETPAJIBHOIO U KOHEYHO-PA3IHOCTHOIO
METO/IOB

Annorauus — PaccMaTpuBaloTcsi JlaMMHapHash [UIEHOYHAS KOHAEGHCAUMS [PU COBMECTHOM ecTe-
CTBEHHOM H BYHYXIEHHON KOHBEKLIMH OMHAPHOTO Napa Ha TJIOCKON nnactuie. [MokazaHo, 4To nocne
COOTBETCTBYIOLUETO MPpeolpa3oBanus KOOPAMHAT oblLlee pellieHHe CTPORTCA 110 Be3pa3MepHOil 1 1MHe
£. Cuctema ypaBHEHHMIt PelIaeTcsi KOHEYHO-DA3HOCTHBIM METOIOM M [IByMSl HHTEMPAJILHBIMH METO-
JAaMH, KOTOpbIE OT/M4aI0TCs APYT OT APYTa HAJTHYHEM BbIPAXKEHUS /18 IPODMIA CKOPOCTH, 1IPHYEM B
ONHOM M3 HUX JONYCKAaeTcs Touka neperuba. 1o Goee ClIOXKHOE BbIpaXeHue A5 NPOdUIA CKOPOCTH
BaXHO B Cjlyyae PacCMOTPEHUS Majof CKOPOCTH KOHJEHCAUMHM M JOMHHHUPYIOILETO BIMSHUA Mac-
coBOl#t cuabl. BooOuie roBops, MHTErpajbHblif METOA BeCbMa yRoOBjETBOpuTeneH. O6cyxaaeTcs
BIMsIHME MEPEHOCA Tema [pH Hanuyuu TepMudeckodl nuddy3ud u Tepmoauddysud Ha cBoiicTsa
napa, XMAKOCTH M TEPMOIMHAMHUYECKOE B3aUMONEHCTBHE,



